Gamma-Oryzanol

COMMON NAME

γ-Oryzanol | Ferulic Acids


TOP BENEFITS OF GAMMA-ORYZANOL

Supports antioxidant defenses*
Supports menopause*
Supports mood*
Supports nervous system*
Supports cognitive function*


WHAT IS GAMMA-ORYZANOL?

Gamma-oryzanol (γ-oryzanol) is a mixture of lipid molecules called steryl ferulates. Like many secondary metabolites in plants, and similar to tocopherols which also naturally occur in the oils of seeds, γ-oryzanol is considered to be an antioxidant. The best food source is rice bran and germ—γ-oryzanol gets its name from the botanical name for rice, Oryza sativa. γ-oryzanol has been sold in Japan since 1962, and most of the human studies on it have been done in Japan and published in non-English papers. These studies have focused primarily on supporting aspects of menopause, mood, nervous system, and heart health. Animal studies have suggested cognitive, mood, stress, immune and sleep support functions.*


Qualia GAMMA-ORYZANOL SOURCING

γ-Oryzanol is sourced from rice bran oil which goes through several extraction steps resulting in a finished product that contains not less than 97% γ-Oryzanol.

γ-Oryzanol is Non-GMO and Vegan.


GAMMA-ORYZANOL DOSING PRINCIPLES AND RATIONALE

One of our dosing principles is to determine whether there is a dosing range, in which many of the benefits occur and above which there appears to be diminishing returns (i.e., a threshold), and to provide a dose within this threshold range (see Neurohacker Dosing Principles ). We consider γ-oryzanol to be one of these threshold compounds. Very modest amounts of γ-oryzanol—10 to 50 mg a day—have been needed to produce a functional benefit in some of the human studies, so we will typically use a dose within this range. In parts of the world where rice bran oil is used or rice bran is consumed, it is a naturally occurring part of the diet; however, there would be a negligible amount found in a typical western diet. The modest dose of γ-oryzanol supplied can be thought of as augmenting the intake of an ingredient that’s not found in a meaningful amount in many people’s diets.*


GAMMA-ORYZANOL KEY MECHANISMS

Supports brain function*

Supports learning and memory [1–4]

Supports histaminergic neurotransmission [5,6]

Supports brain mitochondrial function [3,7,8]

Supports adrenergic signaling [9–11]

Supports serotonin signaling [9–11]

Supports synaptic plasticity [1]

Supports brain mitochondrial function and energy metabolism [1]

Supports neuronal antioxidant defenses [1,10,12–14]

Supports neuroprotection functions [13,15–17]

Supports healthy behavioral and physiological responses to stress [3,9,14,18–22]

Supports non-rapid eye movement (NREM) sleep [5,6]


Supports antioxidant defenses*

Supports antioxidant enzymes [1,14,17,23–25]  

Supports Nrf2 signaling [24]

Supports phase II antioxidant enzymes (HO-1, NQO1) [2,21,24]

Counters ROS production and oxidative stress [14,17]


Supports healthy aging and longevity*

Supports healthy cardiovascular function [23,26,27]

Supports healthy kidney function [28–30]

Supports healthy metabolic function [30–33]

Supports muscle strength [34]

Supports immune performance [35]

Supports mitochondrial function and biogenesis [3,7,17]

Supports autophagy [15,36]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]W. Rungratanawanich, G. Cenini, A. Mastinu, M. Sylvester, A. Wilkening, G. Abate, S.A. Bonini, F. Aria, M. Marziano, G. Maccarinelli, M. Memo, W. Voos, D. Uberti, Nutrients 11 (2019).

[2]A. Mastinu, S.A. Bonini, W. Rungratanawanich, F. Aria, M. Marziano, G. Maccarinelli, G. Abate, M. Premoli, M. Memo, D. Uberti, Nutrients 11 (2019).

[3]M.F. Zafeer, F. Firdaus, E. Anis, M. Mobarak Hossain, Neurotoxicology 73 (2019) 246–257.

[4]B. Michels, H. Zwaka, R. Bartels, O. Lushchak, K. Franke, T. Endres, M. Fendt, I. Song, M. Bakr, T. Budragchaa, B. Westermann, D. Mishra, C. Eschbach, S. Schreyer, A. Lingnau, C. Vahl, M. Hilker, R. Menzel, T. Kähne, V. Leßmann, A. Dityatev, L. Wessjohann, B. Gerber, Sci Adv 4 (2018) eaat6994.

[5]H. Yang, M. Yoon, M.Y. Um, J. Lee, J. Jung, C. Lee, Y.-T. Kim, S. Kwon, B. Kim, S. Cho, Nutrients 9 (2017).

[6]M.Y. Um, S. Kim, Y.-H. Jin, M. Yoon, H. Yang, J. Lee, J. Jung, Y. Urade, Z.-L. Huang, S. Kwon, S. Cho, Mol. Nutr. Food Res. 61 (2017).

[7]S. Hagl, H. Asseburg, M. Heinrich, N. Sus, E.-M. Blumrich, R. Dringen, J. Frank, G.P. Eckert, Neuromolecular Med. 18 (2016) 347–363.

[8]S. Hagl, D. Berressem, R. Grewal, N. Sus, J. Frank, G.P. Eckert, Nutr. Neurosci. 19 (2016) 1–10.

[9]S. Akter, H. Sasaki, K.R. Uddin, Y. Ikeda, H. Miyakawa, S. Shibata, Life Sci. 216 (2019) 119–128.

[10]A.M. Hussein, K.M. Abbas, O.A. Abulseoud, E.-H.M.A. El-Hussainy, Can. J. Physiol. Pharmacol. 95 (2017) 732–742.

[11]J. Chen, D. Lin, C. Zhang, G. Li, N. Zhang, L. Ruan, Q. Yan, J. Li, X. Yu, X. Xie, C. Pang, L. Cao, J. Pan, Y. Xu, Metab. Brain Dis. 30 (2015) 129–136.

[12]G. Erbil, U. Sacik, F. Yilmaz, H. Kisaoglu, Z. Erbayraktar, C. Pekcetin, C. Ozogul, Bratisl. Lek. Listy 120 (2019) 372–379.

[13]Z. Ren, R. Zhang, Y. Li, Y. Li, Z. Yang, H. Yang, Int. J. Mol. Med. 40 (2017) 1444–1456.

[14]J. Lenzi, A.F. Rodrigues, A. de S. Rós, A.B. de Castro, D.D. de Lima, D.D.D. Magro, A.L.B. Zeni, Metab. Brain Dis. 30 (2015) 1453–1463.

[15]C.-Y. Cheng, S.-T. Kao, Y.-C. Lee, Am. J. Chin. Med. 47 (2019) 39–61.

[16]C.-Y. Cheng, S.-T. Kao, Y.-C. Lee, Mol. Med. Rep. 19 (2019) 792–804.

[17]S.M. Araujo, M.T. de Paula, M.R. Poetini, L. Meichtry, V.C. Bortolotto, M.S. Zarzecki, C.R. Jesse, M. Prigol, Neurotoxicology 51 (2015) 96–105.

[18]A.L.B. Zeni, A. Camargo, A.P. Dalmagro, Steroids 125 (2017) 131–136.

[19]T. Singh, T. Kaur, R.K. Goel, Neurochem. Res. 42 (2017) 2940–2948.

[20]S. Akter, H. Sasaki, Y. Ikeda, H. Miyakawa, S. Shibata, J. Pharmacol. Sci. 138 (2018) 155–159.

[21]E. Mhillaj, S. Catino, F.M. Miceli, R. Santangelo, L. Trabace, V. Cuomo, C. Mancuso, Mol. Neurobiol. 55 (2018) 905–916.

[22]X. Zheng, Y. Cheng, Y. Chen, Y. Yue, Y. Li, S. Xia, Y. Li, H. Deng, J. Zhang, Y. Cao, Int. J. Mol. Sci. 20 (2019).

[23]A. Bumrungpert, R. Chongsuwat, C. Phosat, A. Butacnum, J. Altern. Complement. Med. 25 (2019) 353–358.

[24]W. Rungratanawanich, G. Abate, M.M. Serafini, M. Guarienti, M. Catanzaro, M. Marziano, M. Memo, C. Lanni, D. Uberti, Oxid. Med. Cell. Longev. 2018 (2018) 2987249.

[25]M. Ismail, G. Al-Naqeeb, W.A.A.B. Mamat, Z. Ahmad, Nutr. Metab. 7 (2010) 23.

[26]B.T. Nhung, L.D. Tuyen, V.A. Linh, N.D. Van Anh, T.T. Nga, V.T.M. Thuc, K. Yui, Y. Ito, Y. Nakashima, S. Yamamoto, J. Nutr. Sci. Vitaminol. 62 (2016) 295–302.

[27]C. Perez-Ternero, C. Claro, J. Parrado, M.D. Herrera, M. Alvarez de Sotomayor, Nutrition 37 (2017) 22–29.

[28]B. G, G. V, S. T, M.K. A S, H.K. C, S.K. G, Mol. Nutr. Food Res. 62 (2018) e1700511.

[29]F.V. Francisqueti, A.J.T. Ferron, F.K. Hasimoto, P.H.R. Alves, J.L. Garcia, K.C. Dos Santos, F. Moreto, V.D.S. Silva, A.L.A. Ferreira, I.O. Minatel, C.R. Corrêa, Oxid. Med. Cell. Longev. 2018 (2018) 1278392.

[30]F.V. Francisqueti, I.O. Minatel, A.J.T. Ferron, S.G.Z. Bazan, V.D.S. Silva, J.L. Garcia, D.H.S. de Campos, A.L. Ferreira, F. Moreto, A.C. Cicogna, C.R. Corrêa, Nutrients 9 (2017).

[31]H. Masuzaki, C. Kozuka, S. Okamoto, M. Yonamine, H. Tanaka, M. Shimabukuro, J. Diabetes Investig. 10 (2019) 18–25.

[32]L. Wang, Q. Lin, T. Yang, Y. Liang, Y. Nie, Y. Luo, J. Shen, X. Fu, Y. Tang, F. Luo, J. Agric. Food Chem. 65 (2017) 8374–8385.

[33]H.-H. Cheng, C.-Y. Ma, T.-W. Chou, Y.-Y. Chen, M.-H. Lai, Int. J. Vitam. Nutr. Res. 80 (2010) 45–53.

[34]S. Eslami, N.M. Esa, S.M. Marandi, G. Ghasemi, S. Eslami, Indian J. Med. Res. 139 (2014) 857–863.

[35]M. De la Fuente, S. Medina, I. Baeza, L. Jiménez, Eur. J. Nutr. 50 (2011) 563–573.

[36]J.-L. Chen, W.-J. Duan, S. Luo, S. Li, X.-H. Ma, B.-N. Hou, S.-Y. Cheng, S.-H. Fang, Q. Wang, S.-Q. Huang, Y.-B. Chen, Brain Res. 1666 (2017) 17–26.